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Chapter 1

Glossary of symbols

Below is a list of symbols that will be used to varying degrees in this class. We
encourage you to feel free to use them, but won’t require them. In addition, if
some symbol appears that you don’t understand, ask immediately for the en-
glish meaning– most of the time its just a simple sentence or idea contracted
into a single symbol.

∀: for all or for each

∃: there exists

∈: is an element of

/∈: is not an element of

⇒: implies or leads to

⊂: is a subset of

Σ: summation notation (see induction chapter)

Π: similar to Σ except all additions are replaced by multiplications

≡: congruent to (used in modular operations)

→: immediate logic flow

]: cardinality
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Chapter 2

Types of numbers

There are a variety of different ways to categorize numbers, below we set out
the principle divisions. Aside from this, a couple of special subsets are pulled
out and briefly examined.

2.1 Breaking it down

All numbers fall into the following simple categorizations:

2.1.1 Number categories

Natural numbers: “Numbers beginning with 1 and 2, where each number is
exactly 1 greater than its predecessor.”
Whole numbers: “All the natural numbers, and zero”
Integers: “The set of all Whole numbers and their additive inverses”
Rational numbers: “All numbers which can be represented as a ratio p

q , where
p and q are relatively prime integers”
Real numbers: “All numbers without imaginary components” alternatively:
“The set containing all rational and irrational numbers”
Irrational numbers: “All numbers which part are part of the Real numbers but
not part of the Rational numbers”
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The graphic below gives a picture of how these sets of numbers are related:

2.1.2 Primes

Another often considered categorization of numbers is the set of prime numbers.
Primes are the set of natural numbers which have the property that their only
two factors are 1 and itself. Please note that 1 is not prime, nor is it composite.
Occasionally the additive inverse of primes are also considered primes, however
in this course we’ll focus on positive primes. If you have not learned about
primes, learn this definition well; primes will come up repeatedly!

Relatively Prime Numbers

Two numbers are relatively prime if neither number has a common prime factor
with the other, aside from 1. The two numbers are usually both natural num-
bers.

Don’t worry too much about primes at this point, this will be covered more
next week and throughout the rest of this course.
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2.2 Questions

Categorize the following numbers:
(*)1. 2; −1; 0;

√
2; π; 3

2

(*)2. 16384
32 ; 0.7̄; 11

(**)3.

√
2 +

√
2 +

√
2 +
√

2 + ...

(*)4. ∞ (infinity)

Decide which of the following numbers are prime:
(*)5. 2; 5; 8; 0; 51; 1

(**)6. -17; 13689; 52841

(***)7. 89575378759; 852895895231; 3554389342359862463

Decide whether the following pairs of numbers are relatively prime:
(*)8. 2 and 3

(*)9. 21 and 36

(*)10. 216 and 144

(*)11. 121 and 169

(**)12. 40123 and 7433

(**)13. 13 and 131313131313131313131313...1313131313...131313
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Chapter 3

Direct Proofs

Proofs are a way to make a mathematical statement that is without a doubt
true. Often times the proof doesn’t create a formula or theorem, but rather
verify its validity. Here we mention direct proofs. This is the most classical way
of proving things.

Directly proving things involves using definitions, postulates, theorems, and
other already proven or assumed things, in order to prove that something else is
true (either a particular example or a lemma or something of that sort). Those
of you who’ve taken geometry should already be familiar with this method of
proving things. Geometry proofs involve using a handful of postulates (assump-
tions that cannot be proven), for instance, in order to prove something about
an angle value in a figure.

Technically, most algebra proofs also involve using postulates, but most are
not explicitly mentioned; for instance, when multiplying both sides of an equa-
tion, you might state, “Assumption of equality means that all multiples of the
equality will also be true”, but that seems unnecessary since its a very intuitive
fact.

3.1 Examples

Now we give a couple of simple examples. In these examples, the standard set
of equality postulates include: addition, subtraction, multiplication, division,
substitution, and transitive property.

3.1.1 Example 1

Using the standard set of equality postulates, prove the value of x such that:

3x+2=8
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This can be done in an instant using the algebra we know, x=2. But now we’ll
prove this answer using the postulates of equality:

3x+2=8, given
3x=6, by subtraction postulate (-2 to both sides)

x=2, by division postulate (division by 3 to both sides)

Although we (likely) applied the exact same steps in finding x quickly, in this
case we’ve shown work and reasoning as to why this value of x is true without
a doubt.

3.1.2 Example 2

Again, using the standard set of equality postulates, prove the values of x and
y such that:

x+4y=9
2y=4

We can see rather quickly see that y=2, and so x=1. But we need to show how
we derived this conclusion using postulates.

2y=4, given
y=2, division postulate (division by 2)

x+4y=9, given
x+4(2)=9, substitution postulate (y=2)

x=1, subtraction postulate (-8 to both sides)

Now we have shown without a doubt that x=1 and y=2. Although there were
slightly different ways to prove this, they all lead to the same answer and have
no room for ambiguity. The values have been proven.

As might be guessed, there are more challenging proofs than those given above.
In addition, often times there will be no limit on the postulates and theorems
that can be used to prove something.

3.2 Questions

Prove the values that solve the following using the standard set of equality pos-
tulates:

(*)1. 6x+2=3x+5

(*)2. 2x+3y=2 and 2x+4y=4

(**)3. 12x+2y=6 and 15x+3z=9 and 4y+5z=-71
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Chapter 4

Proof by Counter-example

We now begin our journey into the land of proofs. The first type of proof we ex-
plore is proof by counter-example. This isn’t a very utilized proof method, but
it is still effective where applicable. The good news is that this proof method is
very straight forward.

The idea is as follows: I state the following:

Proposition: X is always true.

I believe that this proposition is always true and that no exceptions exist, so by
showing merely a single exception, you will prove that my proposition is false
or at least does not hold for all the cases I claimed it did.

That’s all there is to a proof by counter-example.

4.1 Examples

Now we show a couple of examples.

4.1.1 Example 1

Proposition: All natural numbers are even.

Dis-proof: Even numbers are divisible by 2. 1 is a natural number, and one is
not divisible by 2, therefore that proposition is not always true.

4.1.2 Example 2

Proposition: There exist no triplet primes, where triplet primes are three
prime numbers: a,b,c with c-b=b-a=2.
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Dat-proof: Consider the three numbers: 3,5,7. All three are prime numbers,
and 7-5=5-3=2, which breaks that proposition. This is our counter-example to
disprove their proposition.

Hopefully these two examples have given you an idea as to how these proofs
are done.

4.2 Questions

Find appropriate counter-examples where possible (not all are possible to find
counter-examples for):

(*)1. Proposition: In the interval [0,1) there are more natural numbers than
irrational numbers.

(*)2. Proposition: x2 + 4x + 5 = 0 has no real values of x which satisfy the
equation.

(*)3. Proposition: Everyone in your immediate family is left-handed.

(**)4. Proposition: There are no other triplet primes than 3,5,7.

(**)5. Proposition: define a perfect number as a number whose sum of all
factors (prime and composite) are equal to twice its value. For example, 6 has
factors 1, 2, 3, 6, which sum to 12. We also notice that 28 is a perfect number.
I propose that there are no other perfect numbers than 6 and 28.

(*****)6. Proposition: define a perfect number as above. I propose that there
are no odd perfect numbers.
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Chapter 5

Proof by induction

Here we introduce our first proof method. I kinda lied by saying that last
chapter was the first proof method. Proof by counter-example is more of a
disproving method than a proof technique. As we begin true proofs, please
take careful (careful!) note that these are proof methods, NOT a way to find
solutions to questions, but rather a way to verify the validity of a solution.
Lastly, throughout these proofs, only ONE side of the proposed formula can be
manipulated–you cannot add something to both sides or divide both sides by
something, these operations assume equality.

5.1 A Motivating Example

We begin by considering the following challenge of finding the following sum
1 + 2 + 3 + 4 + ......+ 10 + 11 + ......+ (n− 2) + (n− 1) + n = S(n), where the
...... indicates that terms have been visually left out, but that the logical terms
will fall in place. Also, notice that S is a function of n, the number of terms
we are summing together. Clearly one way to approach this is to simply add
together numbers manually, but that’s not very quick, nor does it give a formula
to immediately generate the sum. However, perhaps we can cleverly solve this
challenge with some sort of trick. We begin by noting that we can arrange these
numbers in any order when adding them up. I figure that perhaps it would be
more convenient to consider the sum as the following two orderings:

S = 1 + 2 + 3 + 4 + ......+ 10 + 11 + ......+ (n− 3) + (n− 2) + (n− 1) + n
S = n+(n−1)+(n−2)+(n−3)+ ......+(n−9)+(n−10)+ ......+4+3+2+1
Adding these together, gives:
2S = (n+ 1) + (n+ 1) + (n+ 1) + (n+ 1) + ...+ (n+ 1) + (n+ 1) + ...+ ...(n+ 1)
We notice that there are n of these terms. Combining these terms, we have:

2S = n ∗ (n+ 1), or simply S(n) = n(n+1)
2 .

This is wholly correct, and there is nothing wrong with this answer. How-

12



ever, later we’ll show the validity of this equation not only through the algebra
that we did above, but also through our new proof method of induction.

5.2 Sigma Notation

We now introduce a bit of notation. The so-called ’Sigma notation’:
∑n

i=0 f(i) =
f(0) + f(1) + f(2) + f(3) + ...... + f(n − 1) + f(n). The letter Sigma is used
because it is the Greek letter S, which is the first letter of Summation, which is
what Sigma notation signifies. Take notice that there are multiple parts to the
Sigma notation: there is a lower bound for the summation, there is an upper
bound for the summation, and lastly there is a function of the increasing index
(in this case i).

For example, the first example of 1+2+3+...+n could’ve been written as:
∑n

i=1 i

5.2.1 Discrete Numbers Only plz

Please take note that everywhere in this, i and n are both Natural or Whole
numbers. This means that i and n can only take the values of 0, 1, 2, 3, 4, 5, 6, 7,
........., 20, 21, 22, ......–but no numbers with decimals or negative values. This is
what typically distinguishes topics in Discrete Mathematics from other branches
of math–you can only have countable values.

Just as a side note, it would be possible to do these summations using neg-
ative or even rational numbers, however, those summations will not be covered.
To do this, you’d merely either specify the separation of each index or you’d
divide each index by some factor so that it’d become a rational number rather
than a natural number.

5.3 Induction

Now, we finally introduce induction. A standard explanation of induction is the
following. Imagine a row of dominoes. The concept is that if I can find the first
domino, and guarantee that each domino has another domino which it will cause
to fall down, then I know for certain that I can knock down the entire chain of
dominoes. In a mathematical setting, this is rephrased as follows: If I can find
the first domino, and show that each nth domino will knock down each (n+1)st

domino, then we know that all dominoes following that first domino must also
fall. At the moment this is rather unclear, so hopefully the following worked
examples will help clarify. As afore mentioned, please note that induction is a
tool for proving formulas, not for finding formulas. Induction will (typically)
not produce a formula for a question, but rather help to show that the formula
that you have must hold true.

The general format is the following:
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Inductive Hypothesis: the following formula is true for all n greater than u.

Then we show that the formula (Inductive Hypothesis) is true for some value
greater than u.

Now we assume the inductive hypothesis is true for some n, and we ask whether
the hypothesis is still true for n+1, given our assumption that its true for some n.

If we can manage to rearrange the n+1 case and substitute in the n case, then
it must be true that the formula holds for all n greater than our base case of u.

5.3.1 Example 1∑n
i=0 2i = 2n+1 − 1

Notice that in this example f(i) = 2i. Notice that for each term we’re dou-
bling the previous term and adding it on to the current sum.

Before we begin this example, it seems worthwhile to consider some of the
importance in this statement. What it literally says is that adding together all
the powers of two in a row, will make one short of the next power of two that’ll
be added. Although a seemingly useless statement, this affirms an absolutely
crucial fact in computer science. Computers have been designed to think in
binary. Binary uses only 1 and 0 to represent all numbers [I would recommend
googling binary or number bases to get a better feel for what this statement
says]. A possible concern is that using only 1 and 0, might lead to some gaps
in the numbers. However, this example allows you to make certain that using
base 2 (binary) counting still accounts for all numbers.

Let us quickly take a look at the n=3 case, before we begin, so that we have a
better grasp on this formula:∑3

i=0 2i = 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 = 16 − 1 = 23+1 − 1.
Ok, now we know that at n=3, we have the above summation. Now its time to
move to the proof.

First we consider the n=0 case:
LHS = 20 = 1 = 2− 1 = 2(0+1) − 1 = RHS

Now we supposed that
∑n

i=0 2i = 2n+1 − 1 is true for some n, and we ask
whether it still holds true for n+1.∑n+1

i=0 2i =
∑n

i=0 2i + 2n+1, notice that we’ve just spliced off the last term.

Now we apply the Inductive Hypothesis. When applying the inductive hypothe-
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sis, we can replace the part of an expression identical to our Inductive Hypothesis
with the expression we’re trying to prove.

∑n
i=0 2i + 2n+1 = 2n+1 − 1 + 2n+1 =

2·2n+1−1 = 2(n+1)+1−1 = RHS, which completes the proof. Since the formula
holds true for n=0, and the n+1 case when true for the n case, the formula will
hold true for all n=0 or greater.

This is a very powerful statement as we mentioned before.

5.3.2 Example 2

Now we return to the problem that started this all: 1+2+3+ ......+(n−1)+n.

Earlier we showed through algebra that
∑n

i=1 i = n(n+1)
2 , now let’s verify this

using our new proof tool of induction.∑n
i=0 i = n(n+1)

2

First consider when n=1:
LHS = 1 = (1+1)·1

2 = RHS, therefore the formula holds for n=1.

Now we suppose that
∑n

i=1 i = n(n+1)
2 is true for some n, and we ask whether

it still holds for n+1.∑n+1
i=1 i =

∑n
i=1 i + (n + 1) = n(n+1)

2 + (n + 1). Notice that again we applied
the same technique of taking off the last term, then plugging in our Inductive
Hypothesis. Now we simply need to see if we can alter what we have into
the n+1 case of our proposed formula. The n+1 case of our formula will be∑n+1

i=1 i = (n+1)((n+1)+1)
2 , which is simply the formula we started with, except

with n+1 plugged in for all the n in the original formula.

Now, with our goal in mind, we proceed. n(n+1)
2 + (n + 1) = n(n+1)

2 + 2·(n+1)
2 ,

expanding the expression we get: n2+n+2n+2
2 = n2+3n+2

2 . The numerator is a
quadratic that can either be solved using the famed quadratic formula, or by
noticing that it can be factored as (n+ 1)(n+ 2).

Putting this back in, we have (n+1)(n+2)
2 = (n+1)((n+1)+1)

2 =
∑n+1

i=1 i. This
is exactly what we’ve hoped for! Since we have shown the formula true for n=1
and true for all n+1 when assumed true for n, the formula will be true for all
n=1 or greater.

5.3.3 Possible Notation Help

The following simplification is true, and seemed helpful to some people, for these
summation based induction proofs. Let’s have g(n) =

∑n
i=1 f(i). Induction is

trying to verify that g(n + 1) =
∑n+1

i=1 f(i), assuming that g(n) =
∑n

i=1 f(i)
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(Inductive Hypothesis). Taking off the last term of the summation in the n+1
case, we have: g(n + 1) =

∑n
i=1 f(i) + f(n + 1), now we apply the Inductive

Hypothesis, so that g(n + 1) = g(n) + f(n + 1). If we can show this, then we
know that our supposed formula must be true.

5.3.4 Example 3

This last example is more subtle than the previous ones. Although the other
ones were less intuitive, this one requires a bit more care while being proved.∑n

i=1 k = n · k

In this example, we notice that f(i) = k. This means that the function does not
depend on i (the index). We should also take note that this is a fairly intuitive
statement: a number added to itself n times, is n times the number.

NOTE: the formula we are trying to prove is often called the Inductive Hy-
pothesis.

We begin with the base case, n=1:
Left-hand side (LHS)=

∑1
i=1 k = k = 1 · k=Right-hand side (RHS).

Now we suppose that
∑n

i=1 k = n · k is true for some n, and we ask whether it
is true for n+1.∑n+1

i=1 k=
∑n

i=1 k + k, which using the Inductive Hypothesis, is also n · k + k,
which can have the k factored out, making: (n + 1) ∗ k, which is exactly RHS
with n+1. This completes the proof. We have found that the formula holds
for 1, and for n+1 when holding for n. This means that it holds for all n=1 or
greater.

5.4 Final Words

Before we conclude, we will discuss a little about the uses of induction. Induction
is typically used in computer science and or discrete math to prove that certain
hypothesized statements are true. Many induction proofs are somewhat similar
to the ones seen here, but also there are a number of proofs that involve products
of successive terms of a sequence or abstract inductive construction of sets and
then using induction on those sets to prove statements about said sets. Needless
to say, induction can get a whole ton tougher, but this is supposed to present
this material in a somewhat friendly and accessible manner. In addition, it will
probably be used a number of times later in this course, so its worthwhile to
practice this proof method.
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5.5 Questions

Prove the following using induction:
(*)1. Σ2f(i) = 2Σf(i)

(*)2.
∑n−1

i=0 (2i+ 1) = n2

(**)3.
∑n

i=0 i
3 = (

∑n
i=0 i)

2

(**)4.
∑n

i=1( 1
2 )i = 1 −

∑∞
n+1( 1

2 )i. This one is a little less formal than one
might desire, as ∞ not very well defined, nor is it clear that ∞ is a natural
number. This still serves as practice.

(*)5.
∑n

i=0 i
2 = n(n+1)(2n+1)

6

These are somewhat different than the previous examples (in that they are
not summation proofs):

(*)6. Prove that 8n − 3n is divisible by 5, ∀n ≥ 1

(*)7. Prove that n3 − n is always divisible by 6, ∀n ≥ 2. Hint: factoring
might help, also it might be useful to show that this is divisible by 2 and by 3,
rather than jump straight to 6

(**)8. Prove that 2n+2 + 32n+1 is divisible by 7, ∀n ≥ 1

(**)9. Prove that 11n − 6 is divisible by 5, ∀n ≥ 1

(*)10. Prove
∏n

i=1
i

i+1 = 1
n+1 . [n.b.: The symbol Π is like Σ except instead of

adding progressive terms, successive terms are multiplied together.]

(****)11. Attempt to prove that:∑
i
ai

n ≥ n
√∏

i ai

Where ai is a set of positive numbers. This is true, but challenging.

(**)12. The following is a “proof” by mathematical induction that everyone
has the same birthday. Find the flaw in the proof. Explain.

Property P(n): Every member of a set of n distinct people has the same
birthday.

Basis of induction: Since a set of one person has only one birthday, so P(1)
is true.

Inductive step: Assume P(k) is true for a positive integer k, we will show
that P(k+1) is also true.

For a set A = {a1, a2, a3, ....ak+1} of k+1 distinct people, consider two sub-
sets B = {a1, a2, a3....ak} and C = {a2, a3...ak+1} each with k distinct people,
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obtained respectively by removing the last and first person from the set A. By
the inductive assumption, every member of set B has the same birthday x, and
every member of set C has the same birthday y. Since the two sets B and C
have a2, a3....ak in common, the two birthdays x and y must be the same. As
a result, every member of the set A has the same birthday and we have shown
P(k+1) is true based on the inductive hypothesis that P(k) is true.
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Chapter 6

Proof by contradiction

This is another method of proof. Again, please do not try to use this to conjure
up a formula, this is only useful for proving validity, although in a different way
than proofs by induction.

Consider a proposed theorem (generalized statement in math) that claims that
something is true. Proof by contradiction works by assuming that its not true.
If, while trying to prove that its not true, you come across something that is
mathematically false or contradicts an initial assumption, then your assumption
that the theorem is wrong, is itself wrong, so the theorem is right. By going
through this, you have disproved the alternative option, and have thus solidified
the proposed theorem. You have proven that the statement cannot be false.

6.1 Example

In chapter 1, we asked whether
√

2 was a rational number. Although its rea-
sonable to assume that its not, how would we know for certain? This is an
opportunity for proof by contradiction.

We begin by assuming that
√

2 = p
q , where p,q are relatively prime natural

numbers. We now consider the square of the initial relation:
√

2 = p
q

2 = p2

q2

p2 = 2q2

Now we consider this statement. It says that some number is equal to twice
another number. This implies that p2 is an even number. Since p2 is even, p
must be even. This is perfectly fine (for now). Since p is even, we can write it
as 2k, where k is a natural number. Now we start over again, except replacing
p with 2k. So we have:
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√
2 = 2k

q

2 = (2k)2

q2

q2 = 4k2

2
q2 = 2k2

We notice that the right side is again twice a number, which means q2 is even,
which means q is even and can be expressed as 2w. This means that if

√
2 can

be expressed as a rational number, then its equal to p
q = 2k

2w , but this implies
that p,q have a common factor of 2, which means that they’re not relatively
prime as we demanded initially. This is our contradiction, which means that√

2 cannot be a rational number. This completes the proof.

We only give one example because this is a relatively straight forward proof
method that just requires practice and a little intuition.

6.2 Questions

(*)1. Prove
√

3 is irrational

(**)2. Prove the following set of statements:

the product of two positive numbers is positive
the product of two negative numbers is positive

the produce of a positive and a negative number is negative

(**)3. Prove the following statements:

the product of two even numbers is an even number
the product of two odd numbers is an odd number

the product of an even number and an odd number is an even number

(*)4. Prove that the difference between an irrational number and a rational
number must be irrational.

(*)5. Prove that if a number m is rational, and the product mn is irrational,
then n must be irrational.
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Chapter 7

Proof by pigeon holing

Consider your classroom. There are maybe about 30 students in the room.
Your mind begins to wander into new domains, and you ask yourself: what’re
the odds that any two people in this room have the same birthday? Or simpler,
what’s the maximum number of people needed to guarantee that not everyone
in the room has a unique birthday?

Enter pigeon holing. The principle of pigeon holing is that you have a cer-
tain number of possible outcomes, but once you have more trials than possible
outcomes, then you must have some repetitions. This is a proof of the minimum
number of trials needed to ensure a collision or overlap. Its not too useful for
verifying formulas, but rather for bounding formulas or expressions.

7.1 Examples

7.1.1 Example 1

Consider the maximum number of coin flips that need to be made before a re-
peat face is shown.

On the first flip we get either a heads or a tails. Best case we accidentally
get the same face twice in a row and that’s the end, only one flip. Worst case,
on the next flip we land the other face, and now all faces have been shown. On
the third flip we get one side and it must be a repeat, which means the most
number of flips is a measly three.

7.1.2 Example 2

Consider the birthday problem we began this chapter with. There are only 365
(or 366) days in a year. Each person has some birthday. This means we can
apply the same logic as in the previous example, but now we need to repeat
it roughly 365 times. This means that the least people we can trap in a room
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and know for certain that there is a repeat birthday is 367 people (366 and the
certain repeater).

7.2 Questions

(*)1. How many rolls of a 6-sided die are needed to ensure that a repeated roll
occurs?

(*)2. How many rolls of an n-sided die are needed to ensure that a repeated roll
occurs?

(**)3. How many real numbers do we need to pick between 0 and 1 so that
we have an ensured repeat?
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